Ассоциация государственных научных центров "НАУКА"

125009, г. Москва, ул. Тверская, д. 11

тел: +7 (925) 606-23-77, agnc@mail.ru

меню бургер

Соединения в хрусталике глаза помогут создать новый солнцезащитный крем

В перспективе соединение может использоваться для производства эффективных солнцезащитных кремов. Результаты исследования опубликованы в майском номере издания Journal of Photochemistry and Photobiology A: Chemistry.

Основной действующий компонент солнцезащитных средств — соединение, которое поглощает свет в ультрафиолетовом диапазоне. Если речь идет об использовании солнцезащитного средства человеком, то самый оптимальный вариант — переход энергии в тепло и дезактивация поглощенного кванта света. В современной косметологии для защиты кожи от ультрафиолетового излучения в основном используются соединения типа циннаматов.

Недавно группа итальянских учёных синтезировала соединение, одновременно поглощающее свет и обладающее антиоксидантными свойствами — циннамат с нитроксильным радикалом.

Группа исследователей из Международного томографического центра СО РАН и лаборатории магнитного резонанса в химии, биологии и медицине Новосибирского государственного университета решила изучить солнцезащитные свойства другого вещества с присоединенным к нему нитроксильным радикалом. Учёные активно исследуют свойства человеческого глаза, в частности, хрусталика, который защищает зрительный орган от ультрафиолетового излучения. В хрусталике глаза высока концентрация кинуренина, в других органах он представлен в очень малых количествах.

Кинуренин — промежуточный продукт ферментативного распада триптофана и биосинтеза никотиновой кислоты в организме человека. Кинуренин и его производные поглощают большую часть ультрафиолета, который попадает в глаз

Синтезом соединения занимались специалисты из Института органической химии СО РАН. Исследователи из МТЦ и лаборатории магнитного резонанса в химии, биологии и медицине НГУ изучили фотохимические свойства полученных соединений и выяснили, что они хорошо поглощают свет и эффективно ингибируют радикальные и другие высокоэнергетические процессы, происходящие в водном растворе и на поверхности кожи. Однако у соединений кинуренина и его производных с нитроксильным радикалом выявилась не очень высокая фотохимическая стабильность — устойчивость к воздействию света.

В работе, на основе которой была написана статья Effect of the spacer length and nitroxide sterical shielding upon photostability of spin-labeled kynurenines, учёными были сделаны попытки уменьшить взаимодействие между кинурениновой и радикальной частями, для того, чтобы повысить фотостабильность соединения.

Фотостабильность повышалась двумя путями — удлинением спейсера (химической связи) и присоединением объемных заместителей (гексильных групп) к радикальному центру. Полученные соединения исследовались в аэробных и анаэробных условиях.

Результаты исследования показали, что в аэробных условиях (в присутствии кислорода) удлинение спейсера и присоединение объемных заместителей повышает фотостабильность соединения кинуренинов с радикалами в три раза, а анаэробных — в пять и в три раза, соответственно.

Ведущий научный сотрудник лаборатории магнитного резонанса в химии, биологии и медицине НГУ, руководитель группы протеомики и метаболомики Международного томографического центра (МТЦ) СО РАН, один из авторов исследования Юрий Центалович подчеркивает, что исследование имеет прикладное и фундаментальное значение:

"В дальнейшем мы будем вести работу по модификации самой молекулы кинуренина. Эта молекула хороша, но не идеальна: 99% солнечной энергии переходит в тепло, но 1% остается, он-то и дает нежелательные эффекты — триплетные состояния, химические реакции. Мы размышляем о том, как можно достичь показателя 99,99%. И идеи, как это сделать, есть".

Источник: пресс-служба НГУ