Ассоциация государственных научных центров "НАУКА"

125009, г. Москва, ул. Тверская, д. 11

тел: +7 (925) 606-23-77, agnc@mail.ru

меню бургер

Гибкий термоэлектрический генератор устанавливает новый рекорд мощности

Исследователи из Саудовской Аравии создали первый термоэлектрический генератор на подложке из гибкого силикона. Устройство способно генерировать в 30 раз больше энергии, чем предыдущие модели аналогичных генераторов. В будущем оно может найти применение в целом ряде областей, в частности, в мобильных телефонах, ноутбуках, биомедицинских датчиках и других портативных инструментах.

Термоэлектрические генераторы – это, фактически, преобразователи тепловой энергии в электрическую. Устройства хорошо проводят электрический ток, но при этом плохо проводят тепло; кроме того, для них характерно проявление так называемого термоэдс (разность потенциалов на двух концах устройства, вызванная перепадом температуры между этими точками).

В своей последней работе группа исследователей из Integrated Nanotechnology Lab в King Abdullah University of Science and Technology (Саудовская Аравия) создала миниатюрный термоэлектрический генератор на гибкой подложке, способный генерировать мощность 0,15 мкВт, что в 30 раз превышает ранее создававшиеся устройства подобного рода.

Стоит отметить, что генерируемой устройством энергии достаточно, чтобы питать отдельные схемы датчиков с минимальными энергозатратами, в частности, некоторые виды вживляемых биомедицинских устройств.

Процесс создания устройства включал в себя несколько этапов. На первом этапе производства устройства исследователи наносили двумерный слой теллурида висмута и теллурида сурьмы на поверхности недорогого объемного монокристалла кремния. Таким образом,на слое кремния всего 18 мкм толщиной формировалось 63 термобатареи. Далее исследователи преобразовывали устройство, заменяя подложку из жесткого кремния на гибкую и прозрачную систему с использованием наиболее современных CMOS-совместимых процессов.

 Как объясняют члены научной группы, значительного увеличения мощности устройства удалось добиться, благодаря уменьшению площади поперечного сечения кремниевой подложки.  А механическая гибкость устройства значительно увеличивает сферу возможных применений разработки, поскольку генератор теперь может быть интегрирован в самые разнообразные поверхности (даже неправильной формы).

Научная группа придерживается мнения, что область применения их разработки практически не имеет границ.

 Термоэлектрические генераторы могут быть полезны в бытовой электронике, к примеру, в мобильных телефонах, ноутбуках или портативных устройствах, ориентированных на использование в агрессивных средах. Кроме того, генераторы подходят для питания имплантируемых электронных компонент. В перспективе они даже потенциально могли бы помочь преодолеть трудности, связанные с сокращением срока службы подобных устройств из-за неисправностей аккумуляторов.

В ближайшем будущем команда планирует изготовить гибкую и высокопроизводительную систему на одном чипе, автономно питаемую при помощи термоэлектрического генератора.

 Основная задача в данном случае будет заключаться в интеграции различных электронных модулей (как генерирования электроэнергии, так и ее хранения) в единую структуру. Однако группа уверена, что сможет реализовать подобную автономную систему уже в ближайшем будущем.

Источник: nanonewsnet.ru