Яндекс.Метрика
16.09.2016

Материалы нового поколения – основа инноваций, технологического лидерства и национальной безопасности России

В очередном номере журнала «Интеллект&Технологии» вышла статья Генерального директора ВИАМ, академика РАН Евгения Каблова.

В очередном номере журнала «Интеллект&Технологии» вышла статья Генерального директора Вcероссийского научно-исследовательского института авиационных материалов (ВИАМ), академика РАН Евгения Николаевича Каблова.

Предлагаем вам ознакомиться с данным материалом.

PDF-версия>>>

***

Материалы нового поколения – основа инноваций, технологического лидерства и национальной безопасности России

 

Далеко не все задумываются о том, какое значение имеют новые материалы в создании той или иной уникальной конструкции или сложной технической системы. А ведь именно благодаря применению таких материалов нынешние инженеры-конструкторы реализовывают многие прорывные проекты в различных сферах.

Вчера и сегодня

Внедрение в России материалов нового поколения и современных технологий вполне способно ускорить развитие многих секторов экономики и направлений отечественной промышленности. Ведь сегодня только новые знания, мощный научно-технический задел и создание на их основе конкурентоспособной инновационной продукции позволят нашей стране избежать технологического рабства, станут залогом ее национальной безопасности и суверенитета.

С момента своего создания в 1932 году Всероссийский научно-исследовательский институт авиационных материалов (ВИАМ) оказался задействованным сразу в решении самых сложных проблем, когда для реализации конструкторского замысла или какой-либо технической задачи требовались новые материалы. Ведь без их применения сложно создать что-то принципиально отличное от старого. Причем касалось это не только авиастроения. В нагрузку мы традиционно помогали решать задачи в таких сферах, как бронезащита, двигателе- и станкостроение, энергетика, медицина и автопром. Работы прибавилось и с появлением новых прорывных направлений, таких как атомная энергетика, ракетно-космические технологии, микроэлектроника. Поэтому на всех этапах развития отечественной промышленности значение материалов для разработки новых образцов техники было определяющим. В стенах ВИАМ создается то, что обеспечивает технологическую независимость и обороноспособность страны. При этом наш институт тесно взаимодействовал и продолжает сотрудничать не только со всеми авиастроительными предприятиями Минпромторга России, но и многими другими организациями, вузами, заводами, КБ, институтами РАН, государственными научными центрами (ГНЦ).

В XXI веке основополагающей для научно-исследовательской деятельности института стала программа «Стратегические направления развития материалов и технологий их переработки на период до 2030 года». В данном документе, одобренном Научно-техническим советом Военно-промышленной комиссии РФ, был проанализирован отечественный и мировой опыт НИР по созданию материалов и технологий нового поколения, обобщена практика применения и спрогнозированы перспективы их производства во всех отраслях нашей экономики. Сформулированы также принципы создания и последующей переработки материалов нового поколения. Сегодня ВИАМ не просто предлагает новые материалы, но оценивает создание изделий в ракурсе потребностей современного производства, определенных стратегиями развития таких ведущих интегрированных структур, как корпорации «ОАК», «ОДК», «Вертолеты России», «ОСК», «Росатом», «Роскосмос», «РЖД» и другие.

Помимо научно-исследовательской инфраструктуры, в ВИАМ существует уникальная экспериментально-технологическая и производственная база. В первую очередь, это вызвано необходимостью обеспечения предприятий оборонно-промышленного комплекса небольшими партиями высокочистых, высокопрочных, жаропрочных, функциональных материалов. Крупным промышленным компаниям подобное производство не выгодно, да и не имеют они необходимой технологической инфрастуктуры. Однако решать проблему обеспечения гособоронзаказа было необходимо. И в 2002 году Президент России В.В. Путин поддержал идею создания малотоннажных производств на базе института. Это решение обеспечило модернизацию технологической инфраструктуры, позволило наладить выпуск необходимых материалов в требуемом объеме, а также организовать подготовку специалистов. Действующее сегодня в ВИАМ 25 малотоннажное высокотехнологичное производство позволяет выпускать 234 наименования продукции, и тем самым решать, как задачи отечественного ОПК, так и в других отраслях нашей промышленности.

Отмечу, что ежегодно институтом разрабатывается более 40 новых марок материалов, почти 150 наших разработок и технологий осваиваются на предприятиях промышленности, около 100 патентов используются в собственном производстве. Сегодня у ВИАМ зарегистрировано более 980 патентов на изобретения, 1300 секретов производства (ноу-хау) и 800 лицензионных соглашений.

Композитное будущее

Сейчас много говорится о применении композитов в различных отраслях промышленности, в том числе авиастроении.

Композиционные материалы без сомнения можно отнести к категории наиболее востребованных продуктов современного промышленного производства. В первую очередь их применяют в высокотехнологичных отраслях, в том числе авиационно-космической. Необходимо отметить, что композиты бывают разные: полимерные композиционные материалы (ПКМ), металлические композиционные материалы (МКМ), керамические конструкционные композиционные материалы (КККМ).

В настоящее время нет летательного аппарата, в конструкции которого не использовались бы ПКМ, а в некоторых планерах современных самолетов их суммарная доля от общего объема применяемых материалов составляет 60%, в беспилотниках – еще больше.

Для наглядности приведу некоторые цифры. Для нужд предприятий авиационной и ракетно-космической промышленности в ВИАМ разработано в общей сложности более 300 марок ПКМ. При этом новые разработки не уступают, а по ряду характеристик значительно превосходят зарубежные аналоги. В частности, это новое поколение композитов, которое уже применяется в конструкциях пассажирского самолета «Сухой Суперджет», а также в процессе создания ближнесреднемагистрального пассажирского лайнера «Иркут МС-21» (планер, мотогондола двигателя) и высокоскоростного вертолета.

Если говорить более конкретно, то в ВИАМ разработаны высокодеформативные полимерные связующие, калиброванные препреги с высокой точностью весовых характеристик, что позволяет существенно повысить параметры прочности и стабильности всех физико-механических характеристик композитов. Наши новые стекло- и углепластики обладают высокими физико-механическими и эксплуатационными характеристиками по сравнению с зарубежными аналогами.

Например, новый стеклопластик ВПС-48/7781, углепластики ВКУ-39, ВКУ-29 и ВКУ-25 применяются при изготовлении узлов реверсивного устройства, воздухозаборника и других деталей мотогондолы нового отечественного двигателя ПД-14 (генеральный конструктор – доктор технических наук, профессор А. А. Иноземцев).

Учеными ВИАМ создан высокопрочный органопластик ВКО-19Л для наружных легких обшивок авиационной техники, представляющий собой листовой композиционный материал. Он предназначен для изготовления герметичных тонколистовых обшивок лопастей несущих винтов вертолетов и элементов самолетов, от которых требуется повышенная устойчивость к динамическим и виброакустическим нагрузкам, эрозионным повреждениям и агрессивным средам. Главными преимуществами ВКО-19Л являются низкое влагопоглощение и высокая ударостойкость, благодаря чему этот органопластик значительно превосходит зарубежные аналоги, в числе которых и всем известный кевлар.

Для пылезащитного устройства перспективного вертолетного двигателя в ВИАМ создан конструкционный углепластик ВКУ-42. Изделие, разработанное в КБ АО «Климов», выполненное из углепластика ВКУ-42 с системой эрозионностойкой защиты, обеспечивает более эффективную очистку воздуха от песка и пыли и способствует снижению массы двигателя на 10% по сравнению с традиционной конструкцией. Не случайно эти «пыльники» вызвали такой ажиотаж среди участников авиасалона «МАКС–2015», ведь благодаря нашим устройствам «сердце» вертолета будет защищено еще надежнее.

Кроме того, в ВИАМ разработана концепция создания высокотемпературных наноструктурированных трещиностойких композиционных материалов (ВМК) и покрытий на основе стеклокерамики, кремнийорганических полимеров и керамики.

В частности, совместно с ИОНХ имени Н. С. Курнакова РАН создан новый трещиностойкий керамический конструкционный материал ВМК-11, выдерживающий до 1500°С без охлаждения, имеющий высокий показатель предела прочности при изгибе до 310 МПа и массу в три раза меньшую, чем у металлического прототипа.

ВМК-11 предназначен для изготовления элементов камеры сгорания ГТД перспективных летательных аппаратов, а также может использоваться в конструкциях узлов и деталей наземных ГТУ, работающих в условиях окислительных и агрессивных сред. Допированный высокодисперсными компонентами in situ, ВМК-11 не уступает по прочностным характеристикам зарубежным КМ, армированным волокнами SiC, производство которых в России пока не налажено. Совместно с ЦИАМ была продемонстрирована возможность создания деталей авиационных двигателей сложной формы из данного материала, в частности жаровых труб. Как свидетельствуют результаты исследований, по эксплуатационным свойствам наши изделия не уступают зарубежным аналогам и превосходят отечественные на 20%.

Очень актуально в сегодняшних условиях дальнейшее развитие и внедрение интеллектуальных полимерных композиционных материалов с функциями самодиагностики. Такие материалы, содержащие оптоволоконные датчики с брэгговскими решетками, помогают в режиме реального времени фиксировать напряженно-деформированное состояние конструкции, а впоследствии позволят создавать «умные» конструкции, адаптирующиеся к внешним нагрузкам.

Сплавы нового поколения

Разработка и внедрение сверхлегких высокопрочных сплавов является одной из важнейших задач сегодня. В первую очередь речь идет об алюминий-литиевых сплавах, которые в совокупности с внедрением перспективных технологий соединения, включая сварку в твердой фазе, позволят существенно снизить массу конструкций, а, следовательно, и расход топлива. Наши алюминий-литиевые сплавы второго поколения 1420, 1441 (разработанные в конце ХХ века) применяются в самолетах Бе-103, Бе-200, Ту-204, а также в конструкциях некоторых других изделий.

Помимо этого, специалистами института разработаны алюминий-литиевые сплавы третьего поколения В-1461, В-1469, легированные редкоземельными металлами (РЗМ) и обладающие повышенными характеристиками прочности и трещиностойкости при пониженной плотности в сравнении с традиционными алюминиевыми сплавами. Данные сплавы являются свариваемыми, благодаря чему впервые в отечественной практике был получен фрагмент сварной панели крыла, выполненный сваркой трением с перемешиванием. Применение новых материалов в совокупности с прогрессивными технологиями сварки позволило не только обеспечить повышенные характеристики устойчивости конструкции, но и снизить ее массу на 10–15%.

Кроме того, на базе высокопрочного алюминий-литиевого сплава В-1469 реализована концепция гибридной панели крыла с применением слоистых металлополимерных композиционных материалов типа СИАЛ. Испытания показали возможность использования данных конструкций для повышения весовой эффективности при сохранении остальных эксплуатационных характеристик.

Предполагается применять эти современные материалы для создания силового набора перспективных изделий гражданской авиационной техники. Данные сплавы, наряду с применением других материалов нового поколения, позволят России создавать свои конкурентоспособные авиалайнеры, не уступающие зарубежным по летным характеристикам. Примечательно, что технология их выплавки освоена на Каменск-Уральском металлургическом заводе, способном производить в год до 1000 тонн таких сплавов.

К жаропрочным сплавам нового поколения относятся созданные в институте титановые сплавы на интерметаллидной основе, в частности так называемые ортосплавы. Они обладают не только низкой плотностью и высокой прочностью на уровне стали, но и высокой жаропрочностью (650–700°С). Серия деформируемых сплавов ВТИ-4, ВИТ-1, ВИТ-5, например, предназначена для изготовления крупногабаритных кольцевых и дисковых заготовок для нового газотурбинного двигателя ПД-14, благодаря чему его весовая эффективность увеличится на 15–20%.

Одна из самых востребованных наших разработок – термостабильный магнитотвердый материал на принципиально иной композиции с РЗМ, что позволяет изготавливать цельные кольцевые магниты с радиальной текстурой. Данные магниты применяются для навигационных приборов и обеспечивают повышение точности измерения угловой скорости в два-три раза, снижение энергопотребления гироскопа на 15–20%.

Есть спрос и на истираемый уплотнительный материал из металлических волокон с тонкопленочным жаростойким покрытием на основе керамообразующих полимеров. Его отличительные свойства: высокая жаростойкость, термостойкость, эрозионная стойкость, малая плотность. Благодаря этому жаростойкому покрытию рабочие температуры материала возрастают на 200°С, а ресурс эксплуатации увеличивается в 1,5–2 раза. Применяя этот материал в проточной части компрессора и турбины ГТД, можно существенно снизить износ дорогостоящих лопаток и получить экономию топлива, в том числе и в условиях тропического климата.

В числе востребованных в нашей отрасли изобретений ВИАМ – высокопрочная коррозионностойкая азотсодержащая свариваемая сталь ВНС-65 для изготовления ответственных тяжелонагруженных деталей планера и шасси, а также теплостойкая сталь ВКС241 для термостойких подшипников, работающих при высоких температурах в вертолетных редукторах и авиационных газотурбинных двигателях.

Кроме того, в ВИАМ восстановлено производство ленты из никель-бериллиевого сплава 97НЛ-ВИ для изготовления токоведущих и силовых упругих чувствительных элементов авиаприборов.

Одно из приоритетных направлений нашей деятельности – создание жаропрочных сплавов нового поколения, позволяющих повысить надежность и ресурс газотурбинных двигателей. Чтобы конкретнее обрисовать фронт работы, приведу еще немного цифр.

Для производства лопаток турбин с монокристаллической структурой в ВИАМ созданы высокожаропрочные сплавы серии ВЖМ, эксплуатационный ресурс которых в 1,5–2 раза превышает лучшие отечественные серийные материалы. Разработана также серия интерметаллидных сплавов ВКНА/ВИН для отливок деталей горячего тракта ГТД с равноосной и монокристаллической структурой, в том числе лопаток, створок и проставок сопла на уровне мировых аналогов по соотношению жаропрочности и плотности, работоспособных до 1200°С по материалу.

Для дисков турбин внедряется жаропрочный сплав ВЖ175, превосходящий отечественные и зарубежные аналоги по комплексу характеристик длительной прочности и сопротивлению малоцикловой усталости. Для сварных конструкций ГТД осваиваются сплавы с уникальными характеристиками, например, высокопрочный ВЖ172, по кратковременной и длительной прочности превосходящий на 15–20% серийные материалы. В качестве материала сварного ротора опробован высокожаростойкий сплав ВЖ171 для жаровых труб и других высокотемпературных деталей ГТД, работающих до 1250°С, превосходящий ранее применяемые аналоги по жаропрочности в 2–3 раза.

Чудо-стекло

Авиационные органические стекла являются важными конструкционными неметаллическими материалами, занимая до 100% всей площади остекления самолетов и вертолетов. При этом они должны обеспечивать высокие оптические свойства, так как малейшая неровность или непрозрачное включение в стекле могут серьезно осложнить работу летчика при пилотировании.

В ВИАМ разработан оригинальный способ упрочнения оргстекол – ориентация, или другими словами, вытяжка стекла при повышенной температуре. Такие ориентированные стекла, которые не теряют прочность при ударе, царапании и даже сквозном пробое, применяются практически на всех отечественных самолетах и вертолетах. ВИАМ также разработал и наладил выпуск специальных паст для удаления с поверхности механических повреждений, возникающих в процессе производства или эксплуатации.

Еще одна проблема для авиаторов – бликование остекленных приборов самолета, решение которой, простите за каламбур, также нашло отражение в профессиональной деятельности специалистов нашего института. Помимо антибликовых покрытий, нами разработаны фильтры переменной оптической плотности (стекла или полимерные пленки, светопропускание которых плавно изменяется по оптическому полю детали остекления). Тем самым часть солнечной радиации, попадающей в кабину из верхней полусферы остекления, эффективно ослабляется, уменьшая величину блика. В то же время практически прозрачное на уровне глаз пилота, такое стекло не мешает оценивать окружающую обстановку.

Как защитить материал?

Как показывает практика, мало создать материал. Нужно еще и спрогнозировать, как поведет он себя в условиях эксплуатации, ведь от этого зависит очень многое, в том числе безопасность жизни. При этом необходимо еще и защитить материал от воздействия окружающей среды.

Композиты тоже разрушаются под действием ультрафиолета, ветра, морской соли, микроорганизмов и других природных явлений. Согласно расчетам, можно избежать примерно четверти всех потерь, если использовать научно обоснованные методы защиты материалов от коррозии, старения, биоповреждений и других климатических факторов.

Для противодействия коррозии и биоразрушению в ВИАМ разрабатываются комплексные системы защиты конструкций из металлических, полимерных композиционных материалов и их соединений, создаются технологии защиты и ремонта, а также специальные методики испытаний. Замечу также, что ВИАМ всегда был в авиационной отрасли головной организацией по неразрушающему контролю, и диагностика качества деталей из композитов – одно из приоритетных направлений наших исследований и разработок.

Сегодня на большинстве отечественных предприятий отрасли неразрушающий контроль деталей и заготовок ведется по разработанным нами методикам. В конце 2015 года ВИАМ совместно с МГТУ им. Н.Э. Баумана разработал технологии автоматизированного ультразвукового контроля и роботизированный комплекс, который заменит человека при диагностике деталей из композиционных материалов. При стоимости в 3–4 раза меньшей, чем у зарубежных аналогов, этот комплекс во многом их превосходит. Например, в программном обеспечении применены запатентованные нами алгоритмы обработки данных, повышающие качество контроля; контроль можно осуществлять сухим методом, что очень важно для композитов. Надеюсь, в ближайшей перспективе эта разработка будет широко внедрена в нашу промышленность.

Большая работа была выполнена по созданию системы покрытий для глубокомодернизированного серийного военно-транспортного самолета Ил-76МД-90А. ВИАМ осуществляет поставку лакокрасочного покрытия в требуемых количествах и ведет авторский контроль. Применяются покрытия на основе фторполиуретановой эмали ВЭ-69 и эрозионностойкой эмали ВЭ-71, которые успешно защищают материал от перепада температур и других факторов и по своим свойствам превосходят зарубежные аналоги. Особенность матовой эмали ВЭ-69 состоит в том, что она обладает высокой атмосферостойкостью и улучшенными защитными свойствами, а ВЭ-71 – обеспечивает радиопрозрачные свойства и эрозионную стойкость покрытий. Данные эмали имеют дополнительно специальные защитные свойства, что продиктовано требованиями военно-транспортной авиации.

Основа промышленной революции

Одним из прорывных направлений, несомненно, являются аддитивные технологии или 3D-печать. Они являются основой новой промышленной революции, так как уже сейчас позволяют повысить производительность труда в 20-30 раз, довести коэффициент использования материала до единицы, в разы снизить энергозатраты.

Аддитивные технологии востребованы в авиакосмической сфере, оборонной промышленности, медицине и других научных сферах.

Сегодня для развития аддитивных технологий в России необходима координация усилий всех проектных, научных и инженерных команд по работе сразу в нескольких конкретных направлениях. Это и разработка национальных стандартов для аддитивного производства, и подготовка квалифицированных кадров, и проектирование, и создание 3D-установок, а также производство отечественных металлических и неметаллических порошковых композиций, от которых зависит качество получаемых изделий. Нашему институту удалось добиться определенных результатов по данным направлениям. Мы смогли создать свои порошковые композиции 28 марок. Причем одна из них уже используется для изготовления конкретной детали, внесенной в конструкторскую документацию. Это завихритель фронтового устройства камеры сгорания перспективного двигателя ПД-14, который будут ставить на самолет МС-21.

Кстати, в новом газотурбинном двигателе ПД-14 генеральный конструктор Александр Александрович Иноземцев применил более 20 марок материалов нового поколения. В частности – для изготовления деталей и агрегатов мотогондолы этого двигателя (первой в СССР и РФ из полимерных композиционных материалов).

В этом году специалисты ВИАМ впервые в России изготовили по аддитивной технологии прототип малоразмерного газотурбинного двигателя (МГТД) для беспилотных летательных аппаратов. Работа проводилась совместно с Фондом перспективных исследований.  

Малоразмерный газотурбинный двигатель был изготовлен полностью на базе аддитивного производства ВИАМ по новой технологии послойного лазерного сплавления с использованием металлопорошковых композиций жаропрочного и алюминиевого сплавов, которые также созданы специалистами института. Эта технология позволяет получить деталь в 30 раз быстрее, чем традиционными способами.

Благодаря применению аддитивных технологий удалось напечатать детали двигателя с уникальными параметрами. Например, толщина стенки камеры сгорания этого двигателя составляет 0,3 мм. Таких параметров можно достичь, только используя 3D-печать.

«Интеллект&Технологии» №2 (14) 2016