Индекс цитирования Яндекс.Метрика

Направления

16.11.2021

Дышите глубже: ученые рекомендуют респираторы

Исследователи из Курчатовского института, МИФИ и Института электрофизики и электроэнергетики РАН обсудили перспективные технологии, способные повысить эффективность защиты органов дыхания от вируса SARS-CoV-2 с помощью масок и респираторов.

В частности, они предложили принципиально новый подход: использование фильтров из ориентированных заряженных волокон.

Осенью 2021 года Россия, как и весь мир, столкнулась с четвертой волной эпидемии SARS-CoV-2. Более того, ученые предупреждают — на пандемию может наложиться сезонная эпидемия гриппа. Поэтому проблема защиты органов дыхания сегодня актуальна как никогда.

Когда человек кашляет, разговаривает и даже просто дышит, в воздух попадают микрокапли слюны и слизи, которые могут содержать патоген. Самые крупные из этих частиц (более 100 мкм) быстро осаждаются на поверхностях, пролетая не больше метра. Те, что помельче, легко разносятся воздушными потоками, и уже через 5–10 мин их можно обнаружить во всем объеме закрытого помещения. Именно они представляют наибольшую опасность – хотя часть из них задержат реснички в дыхательных путях, самые мелкие, размером несколько сотен нанометров, способны проникнуть глубоко в легкие, в альвеолярные отделы. При этом не более десятка таких частиц уже могут содержать минимальную инфицирующую дозу вируса.

Ставшие уже привычными медицинские маски прилегают к лицу недостаточно плотно, их основное предназначение — защита от крупных капель, возникающих при кашле или чихании. Гораздо эффективнее использовать респираторы класса защиты FFP2, способные снизить концентрацию частиц во вдыхаемом воздухе по меньшей мере на 94%.

Однако у респираторов есть две основные проблемы, решить которые одновременно очень трудно. Во-первых, в них ощутимо затруднено дыхание, поэтому тяжело выполнять работу, связанную с физическими нагрузками. Многие модели респираторов оснащены клапаном, который снижает сопротивление на выдохе и помогает отводить тепло и влагу, но при этом выдыхаемый воздух не фильтруется, и окружающие защищены не будут. Во-вторых, для каждого фильтрующего материала есть такая характеристика, как наиболее проникающий размер частиц, при котором его эффективность резко снижается. Зачастую этот показатель совпадает с характерными размерами частиц в аэрозоле.

"Многие научные коллективы сейчас работают над тем, чтобы сделать средства защиты органов дыхания эффективнее и удобнее, – комментирует начальник отдела нанобиоматериалов и структур Курчатовского комплекса НБИКС-природоподобных технологий Ксения Луканина. – Например, можно повысить качество фильтрации, изменив структуру поверхности волокон фильтра".

Одна из таких модификаций — создание пор. Пористые волокна замедляют скорость воздушного потока, что повысит вероятность захвата частиц (рис. 1).

Схожий эффект дает использование волокон, покрытых "усиками" нанометрового размера (рис. 2) или материала, состоящего из смеси волокон, отличающихся диаметрами в десятки раз (рис. 3). Защита возрастет – однако и дышать в этом случае станет труднее.

Перспективно и применение для фильтра многослойных полимерных материалов. Конструкция из четырех слоев с толщиной волокон обеспечила эффективную фильтрацию частиц в диапазоне 50–500 нм – наиболее важном с точки зрения защиты от вируса.

"Классическим методом получения необходимых волокнистых фильтрующих материалов является электроформование (electrospinning), – поясняет профессор МИФИ, учёный секретарь "Росатома" Александр Будыка. – Современные подходы к этому методу позволяют получать полимерные волокна заданных размеров, совмещать в одном материале волокна разных диаметров, а также контролировать их укладку. В итоге становится возможным создание разнообразных волокнистых структур: от хаотических до системы параллельных волокон".

Так, например, с помощью предложенной ранее учеными из Курчатовского института модификации электроформования возможно не только задать направление укладки волокон, но и при необходимости сменить его. Если расположить проводящие полимерные волокна крест-накрест, получившаяся тонкая сетка не будет затруднять дыхание. А эффективно улавливать частицы поможет разность потенциалов на волокнах. Формировать заряд можно будет с помощью компактного источника питания – небольшой батарейки, закрепленной на респираторе.

Эффективность фильтрации сильно зависит и от плотности прилегания к лицу. Поэтому в будущем для производства респираторов предлагают использовать индивидуальную 3D-печать. С помощью смартфона пользователь может сделать сканы лица, по которым потом будет печататься каркас маски.